1,174 research outputs found

    Flavor decomposition of the elastic nucleon electromagnetic form factors

    Full text link
    The u- and d-quark contributions to the elastic nucleon electromagnetic form factors have been determined using experimental data on GEn, GMn, GpE, and GpM. Such a flavor separation of the form factors became possible up to 3.4 GeV2 with recent data on GEn from Hall A at JLab. At a negative four-momentum transfer squared Q2 above 1 GeV2, for both the u- and d-quark components, the ratio of the Pauli form factor to the Dirac form factor, F2/F1, was found to be almost constant, and for each of F2 and F1 individually, the d-quark portions of both form factors drop continuously with increasing Q2.Comment: 4 pages, 3 figure

    Thermodynamics of Blue Phases In Electric Fields

    Full text link
    We present extensive numerical studies to determine the phase diagrams of cubic and hexagonal blue phases in an electric field. We confirm the earlier prediction that hexagonal phases, both 2 and 3 dimensional, are stabilized by a field, but we significantly refine the phase boundaries, which were previously estimated by means of a semi-analytical approximation. In particular, our simulations show that the blue phase I -- blue phase II transition at fixed chirality is largely unaffected by electric field, as observed experimentally.Comment: submitted to Physical Review E, 7 pages (excluding figures), 12 figure

    Colloids in active fluids: Anomalous micro-rheology and negative drag

    Full text link
    We simulate an experiment in which a colloidal probe is pulled through an active nematic fluid. We find that the drag on the particle is non-Stokesian (not proportional to its radius). Strikingly, a large enough particle in contractile fluid (such as an actomyosin gel) can show negative viscous drag in steady state: the particle moves in the opposite direction to the externally applied force. We explain this, and the qualitative trends seen in our simulations, in terms of the disruption of orientational order around the probe particle and the resulting modifications to the active stress.Comment: 5 pages, 3 figure

    Dense colloidal suspensions under time-dependent shear

    Full text link
    We consider the nonlinear rheology of dense colloidal suspensions under a time-dependent simple shear flow. Starting from the Smoluchowski equation for interacting Brownian particles advected by shearing (ignoring fluctuations in fluid velocity) we develop a formalism which enables the calculation of time-dependent, far-from-equilibrium averages. Taking shear-stress as an example we derive exactly a generalized Green-Kubo relation, and an equation of motion for the transient density correlator, involving a three-time memory function. Mode coupling approximations give a closed constitutive equation yielding the time-dependent stress for arbitrary shear rate history. We solve this equation numerically for the special case of a hard sphere glass subject to step-strain.Comment: 4 page

    Dilatancy, Jamming, and the Physics of Granulation

    Full text link
    Granulation is a process whereby a dense colloidal suspension is converted into pasty granules (surrounded by air) by application of shear. Central to the stability of the granules is the capillary force arising from the interfacial tension between solvent and air. This force appears capable of maintaining a solvent granule in a jammed solid state, under conditions where the same amount of solvent and colloid could also exist as a flowable droplet. We argue that in the early stages of granulation the physics of dilatancy, which requires that a powder expand on shearing, is converted by capillary forces into the physics of arrest. Using a schematic model of colloidal arrest under stress, we speculate upon various jamming and granulation scenarios. Some preliminary experimental results on aspects of granulation in hard-sphere colloidal suspensions are also reported.Comment: Original article intended for J Phys Cond Mat special issue on Granular Materials (M Nicodemi, Ed.

    Bulk rheology and microrheology of active fluids

    Full text link
    We simulate macroscopic shear experiments in active nematics and compare them with microrheology simulations where a spherical probe particle is dragged through an active fluid. In both cases we define an effective viscosity: in the case of bulk shear simulations this is the ratio between shear stress and shear rate, whereas in the microrheology case it involves the ratio between the friction coefficient and the particle size. We show that this effective viscosity, rather than being solely a property of the active fluid, is affected by the way chosen to measure it, and strongly depends on details such as the anchoring conditions at the probe surface and on both the system size and the size of the probe particle.Comment: 12 pages, 10 figure

    Dynamics and Thermodynamics of the Glass Transition

    Full text link
    The principal theme of this paper is that anomalously slow, super-Arrhenius relaxations in glassy materials may be activated processes involving chains of molecular displacements. As pointed out in a preceding paper with A. Lemaitre, the entropy of critically long excitation chains can enable them to grow without bound, thus activating stable thermal fluctuations in the local density or molecular coordination of the material. I argue here that the intrinsic molecular-scale disorder in a glass plays an essential role in determining the activation rate for such chains, and show that a simple disorder-related correction to the earlier theory recovers the Vogel-Fulcher law in three dimensions. A key feature of this theory is that the spatial extent of critically long excitation chains diverges at the Vogel-Fulcher temperature. I speculate that this diverging length scale implies that, as the temperature decreases, increasingly large regions of the system become frozen and do not contribute to the configurational entropy, and thus ergodicity is partially broken in the super-Arrhenius region above the Kauzmann temperature TKT_K. This partially broken ergodicity seems to explain the vanishing entropy at TKT_K and other observed relations between dynamics and thermodynamics at the glass transition.Comment: 20 pages, no figures, some further revision

    L\'evy walks and scaling in quenched disordered media

    Full text link
    We study L\'evy walks in quenched disordered one-dimensional media, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling relations for the random-walk probability and for the resistivity in the equivalent electric problem, we obtain the asymptotic behavior of the mean square displacement as a function of the exponent characterizing the scatterers distribution. We demonstrate that in quenched media different average procedures can display different asymptotic behavior. In particular, we estimate the moments of the displacement averaged over processes starting from scattering sites, in analogy with recent experiments. Our results are compared with numerical simulations, with excellent agreement.Comment: Phys. Rev. E 81, 060101(R) (2010

    Osmotic Pressure of Solutions Containing Flexible Polymers Subject to an Annealed Molecular Weight Distribution

    Full text link
    The osmotic pressure PP in equilibrium polymers (EP) in good solvent is investigated by means of a three dimensional off-lattice Monte Carlo simulation. Our results compare well with real space renormalisation group theory and the osmotic compressibility K \propto \phi \upd \phi/\upd P from recent light scattering study of systems of long worm-like micelles. We confirm the scaling predictions for EP based on traditional physics of quenched monodisperse polymers in the dilute and semidilute limit. Specifically, we find Pϕ2.3P\propto \phi^{2.3} and, hence, Kϕ0.3K \propto \phi^{-0.3} in the semidilute regime --- in agreement with both theory and experiment. At higher concentrations where the semidilute blobs become too small and hard-core interactions and packing effects become dominant, a much stronger increase % \log(P/\phi)\approx \log(\Nav^2/\phi) \propto \phi is evidenced and, consequently, the compressibility decreases much more rapidly with ϕ\phi than predicted from semidilute polymer theory, but again in agreement with experiment.Comment: 7 pages, 4 figures, LATE

    A minimal model for chaotic shear banding in shear-thickening fluids

    Full text link
    We present a minimal model for spatiotemporal oscillation and rheochaos in shear-thickening complex fluids at zero Reynolds number. In the model, a tendency towards inhomogeneous flows in the form of shear bands combines with a slow structural dynamics, modelled by delayed stress relaxation. Using Fourier-space numerics, we study the nonequilibrium `phase diagram' of the fluid as a function of a steady mean (spatially averaged) stress, and of the relaxation time for structural relaxation. We find several distinct regions of periodic behavior (oscillating bands, travelling bands, and more complex oscillations) and also regions of spatiotemporal rheochaos. A low-dimensional truncation of the model retains the important physical features of the full model (including rheochaos) despite the suppression of sharply defined interfaces between shear bands. Our model maps onto the FitzHugh-Nagumo model for neural network dynamics, with an unusual form of long-range coupling.Comment: Revised version (in particular, new section III.E. and Appendix A
    corecore